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Jets and EIC

§ Goal: discuss possible applications of jet physics to both e+p and 
e+A collisions
§ Consistent with the theme of the workshop, one should discuss the novel tools 

and observables that are being developed to probe the cold quark-gluon matter 
with jets in electron-ion collisions

§ Electron Ion Collider
§ Highest priority for new construction in NSAC 2015 long range plan
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and observables that are being developed to probe the cold quark-gluon matter 
with jets in electron-ion collisions

§ Electron Ion Collider
§ Highest priority for new construction in NSAC 2015 long range plan

§ National Academy: report on EIC to be released on July 24
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Jets in DIS

§ Deep Inelastic Scattering (DIS) and photon-production

§ Well established QCD factorization formalism
§ Usual DIS process with virtual photon Q2 large

§ Photon-production
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direct: Q2 large resolved: Q2 ~ 0



Jets at an EIC

§ It was realized only recently that jet measurements are possible at 
EIC
§ EIC white paper does not contain study on jet physics: arXiv:1212.1701 

(recently updated on Nov. 30, 2014)

§ Our outstanding experimental colleagues and EIC team made the initial 
feasibility studies in e+p collisions

§ No (published) jet studies in e+A collisions yet: EIC would be the very first one
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Brian Page, Santa Fe Jets and Heavy Flavor Workshop 2016



Purposes of jet/QCD studies in DIS

§ I: Studying QCD/jets to probe 
§ Fundamental parameters of QCD: strong coupling constant

§ Parton structure of proton

§ Signature for BSM physics 

§ II: Studying QCD/jets to probe QCD medium
§ Cold nuclear matter in e+A collisions

§ Hot quark-gluon plasma in A+A collisions
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NNLO + resummation

NLO + resummation is probably sufficient at the moment
First e+A jet measurements are still yet to come at EIC
Too many effects need to be taken into account in A+A



Jets in e+p collisions at HERA

§ Jet measurements in e+p collisions are only from HERA
§ Theoretical computations could be obtained through NLOJet++ (Zoltan Nagy, 

based on Catani-Seymour dipole subtraction method)
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Jets in e+p collisions

§ Jets at HERA are extremely important
§ Constraining the gluon PDF

9

Without jets With jets



Jets in e+p collisions

§ Jets at HERA are extremely important
§ Constraining the gluon PDFs

§ Determine the strong coupling constant
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Dashed: without jets
Solid: with jets



New developments since then

§ NNLO have become available
§ arXiv:1607.04921, Abelof, Boughezal, Liu, Petriello

§ arXiv:1703.05977, Currie, Gehrmann, Huss, Niehues
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arXiv: 1709.07251, see more at R. Zlebcik’s talk



Other development: QCD factorization

§ Single inclusive jet production:

§ The idea is simple: dynamics which happen in very different 
scales do not interfere with each other: !QCD vs PT
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Refactorization: semi-inclusive jet function

§ When R << 1, the relevant scales for single jet production
§ Two momenta: (1)  hard collision: pT (2) jet radius can build one: pT*R

§ A further factorization

§ Good thing: semi-inclusive jet function Jq,g(z, R) are purely perturbative
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Kang, Ringer, Vitev, arXiv:1606.06732, Dai, Kim, Leibovich, 1606.07411, 
see also, Kaufmann, Mukherjee, Vogelsang, 1506.01415
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Semi-inclusive jet functions

§ Describe how a parton (q or g) is transformed into a jet (with a jet 
radius R) and energy fraction z

§ Semi-inclusive quark/gluon jet functions follow DGLAP evolution 
equation, just like hadron fragmentation function
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Features: unified formalism

§ Unified factorization formalism for hadron and jet production
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§ Even though derived for small R, R = 0.7, the difference between 
small R approximation and full result is less than 5%

Small R is a good approximation
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Mukherjee, Vogelsang, arXiv: 1209.1785



Ln(R) resummation

§ Natural scale for jet functions: pT*R

§ Jet radius resummation: 
§ Note: ln(R) < 0 when R < 1

§ Solve experimental puzzle at LHC 
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Kang, Ringer, Vitev, arXiv:1606.06732

arXiv:1609.05383



Effect of ln(R) resummation

§ The ln(R) is a big source for the discrepancy

§ Threshold resummation further improve the agreement
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Open questions in e+A DIS

§ What is the fundamental quark-gluon structure of light and heavy 
nuclei?
§ Distribution of quarks and gluons in a nucleus: shadowing, gluon saturation, …

§ Can the nucleus, serving as a color filter, provide novel insights 
into the propagation, attenuation and hadronization of colored 
quarks and gluons?
§ Parton propagation, parton energy loss, shower development, … in the nucleus
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Initial-state effect 
(from modification of PDFs)

+
Final-state effect

(propagation through the nucleus)



Lesson learned: initial-state effect

§ Modification of PDFs in nuclei
§ Very important in describing inclusive DIS data

§ Of course, small-x effects (color glass condensate) can be studied
similarly
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Eskola, et.al., arXiv: 1612.05471



Lesson learned: final-state interaction

§ Normalized through inclusive DIS measurements
§ Effects of PDFs in nuclei cancel out in the ratio

§ Modification if there are, must come from final-state interaction in the nucleus
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HERMES, arXiv:0704.3270



What happens in a large nucleus?

§ One method follows from pioneer work of Mueller and Qiu
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A power correction term to the 
usual DGLAP-type evolution



High-twist approach to jet quenching

§ SIDIS as an example: multiple scattering in the medium leads to 
induced gluon radiation

§ Evolution of fragmentation function is modified
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Framework: Qiu, Sterman, 90s
Applications: Wang, Guo, Qin, Majumder, et.al.

Xin-Nian Wang, et.al., 1401.5109
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Parton multiple scattering in the medium

§ Transverse momentum broadening (TMB) is sensitive to multiple 
scattering

§ First non-trivial: double scattering
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Works pretty well

§ Description of the data using single set of correlation functions
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Generalized to hot QCD medium

§ Vacuum splitting

§ Medium splitting (SCETG)
§ transverse momentum kick through Glauber gluons
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Light and heavy meson modification

§ The fragmentation function modified this way does lead to good 
description of light and heavy meson in A+A collisions
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Works also for jets

§ Inclusive jet cross section also gets modified

§ Expect this framework to be working for
§ Nuclear modification of jet cross section in e+A collisions
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Other thinking of jet evolution in medium

§ Vacuum

§ Medium

29

E. Iancu, hard probe 2015



Jet physics is promising at EIC

§ Plots from EIC team
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Photo-production of dijet

See more from B. Page’s talk



Jet substructure

§ Look inside the jet
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Jet energy profile

§ Jet shape: internal energy profile of the jet

§ Make sense of the data
§ Quark jet is narrower than gluon jet due to the smaller color charge (CF vs CA)

§ DIS is dominated by quark jets

§ ppbar is dominated by gluon jets
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Y.T. Chien, 2014



Progress since HERA time

§ At the time of HERA (pre-LHC), jet substructure is mostly 
compared with event generators
§ Jet shape: either fixed-order computations or Seymour’s MLL results

§ R >> r: need resummation ln(R/r)
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Compare with jet shape at CDF
H.n. Li, Z. Li, C.P. Yuan, 2011, 2012 Improved results from Y.T. Chien, I. Vitev,  2014



Further Progress since HERA time

§ So far all the theoretical formalism is concentrated only on 
§ jet function: only collinear degrees of freedom

§ Recently, we find the soft radiation is also important, in order to 
write down the consistent factorization formalism

34

Kang, Ringer, Waalewijn, 1705.05375

It would be nice to see the 
phenomenological consequences

R

r



Further Progress in A+A collisions

§ Used the same medium-induced splitting functions

§ It would be interesting to make computations for jet shape for 
both e+p and e+A collisions using new formalism
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Improved results from Y.T. Chien, I. Vitev,  2015



Fragmentation inside a jet

§ Semi-inclusive fragmenting jet function

§ Two DGLAPs:
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Light hadrons: work well

§ Light charged hadrons
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Further improvement

§ So far standard FFs are only constrained for z > 0.05
§ These data can constrain small-z 

§ One might need threshold resummation for large z region
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Jet fragmentation function in A+A collisions

§ Medium modification can be computed similarly once the 
medium induced splitting functions are given (actual 
phenomenology is more subtle)

§ With additional R in control, should have more power than the 
usual SIDIS fragmentation functions in e+A collisions
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Ringer, CIPANP 2018



Jet angularity

§ Trust was defined as an event shape parameter to understand 
radiation pattern

§ is equivalent to dijet limit

§ A generalized class of IR safe observables, angularity (applied to jet)

§ a=0 related to thrust (jet mass)

§ a=1 related to jet broadening
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Jet angularity

§ Similar replacement:

§ Refactorization
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Jet mass: a = 0

§ Comparison with jet mass measurements at the LHC
§ Need a large non-perturbative parameter

§ Strong non-perturbative sensitivity: multi-parton interactions (MPI), pileups, 
and hadronization (generally need to apply “grooming”, e.g. soft drop grooming
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See details from Kyle Lee’s talk
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Jet mass at an EIC

§ Computation and comparison with event generator
§ e+A collision is much cleaner environment, likely the main non-perturbative 

contribution is hadronization effects
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Help from B. Page, E. Aschenauer



Summary

§ Even though jet capability at the future EIC is realized only 
recently, we found that jet physics could be very powerful 
§ To understand parton propagation and energy loss in cold QCD matter

§ Especially with the advancement in jet and jet substructure from LHC, the clean 
environment of e+A collisions should be ideal to constrain the properties of 
cold QCD matter, probe the underlying mechanism

§ In turn it should lead to better understanding of hot QCD matter

§ Exciting jet physics program at EIC
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Thank you!


